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Abstract A new through-space conjugated polymer containing alternate

[2.2]paracyclophane and dithiafulvene units was synthesized by cycloaddition

polymerization of aldothioketene derived from 4,16-diethynyl[2.2]paracyclophane.

The obtained polymer was soluble in common organic solvents and could form thin

films. UV–vis absorption spectrum of the polymer revealed that its conjugation

length increased due to the through-space interaction of the [2.2]paracyclophane

units. The polymer formed a charge transfer (CT) complex with 7,7,8,8-tetracya-

noquinodimethane (TCNQ) in DMSO.

Keywords Through-space conjugation � [2.2]Paracyclophane � Dithiafulvene �
Charge transfer complex

Introduction

Conjugated polymers are one of the most promising functional materials, because

they can be used in the fabrication of conducting devices [1–6], light-emitting

diodes [7, 8], field effect transistors [5, 6], etc. Their optical and electronic

properties can be easily tuned by changing the components of their backbones and

modifying their structures. A number of aromatic compounds have been incorpo-

rated into conjugated polymers, and their physical properties have been studied.

[2.2]Paracyclophane is a fascinating molecule comprising two benzene rings

closely linked (a distance of approximately 2.8–3.1 Å) by two ethylene bridges.
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Since the first preparation of [2.2]paracyclophane in 1949 [9], cyclophane chemistry

has attracted significant attention. As the two benzene rings are very close to each

other, [2.2]paracyclophane and its derivatives exhibit a transannular p–p interaction,

which leads to a unique extended through-space p-conjugation [10–20]. A variety of

[2.2]paracyclophane derivatives have been prepared so far, and their structural

features and physical properties have been investigated in detail [10–13]. There are

several reports on the synthesis of polymers containing [m.n]paracyclophane

(m B 3, n B 3) by chain polymerization [21–31] and polycondensation techniques

[32–35]. However, despite the fact that conjugated polymers have an impressive

conjugation system, a few studies have been conducted on the synthesis of

conjugated polymers with [2.2]paracyclophane in the polymer main chain [36–39].

Recently, we focused on the synthesis of through-space conjugated polymers with

[2.2]paracyclophane as the repeating unit in the polymer main chain [40–55]. We

found that their conjugation length increased via the through-space interaction of the

benzene rings. In addition, they exhibited intense blue–orange fluorescence

emissions, irrespective of their p-stacked structures in the polymer main chain.

Cycloaddition of aldothioketene proceeds smoothly under a mild reaction

condition, producing a dithiafulvene skeleton [56–58]. In our previous studies, we

prepared a series of conjugated polymers containing a dithiafulvene unit by

cycloaddition polymerization [59–61]. This method enables the incorporation of a

variety of aromatic compounds in the conjugated polymer backbone containing

dithiafulvene. In this study, we demonstrated the cycloaddition polymerization of a

4,16-diethynyl[2.2]paracyclophane monomer in order to expand the substrate scope

of the cycloaddition polymerization of cyclophane compounds as well as to

elucidate the electrochemical behaviors of the [2.2]paracyclophane-containing

conjugated polymer by exploiting the through-space interaction.

Experimental

General

1H and 13C NMR were recorded on a JEOL 400 instrument at 400 and 100 MHz,

respectively. All samples were analyzed in CDCl3 or DMSO-d6, and chemical shift

values were expressed relative to Me4Si as an internal standard. IR spectra were

obtained on a Perkin-Elmer 1600 spectrometer. UV–vis measurements were carried

out on a JASCO V-530 spectrophotometer at room temperature. Photoluminescence

spectra were recorded on a Perkin-Elmer LS50B luminescence spectrometer at

room temperature. Gel permeation chromatography (GPC) was carried out on a UV-

8020 and RI-8020 (TSK-GEL a-3000) using DMF containing 10 mM LiBr as an

eluent after calibration with standard polystyrene. For cyclic voltammetry (CV), a

polymer thin film was obtained from a DMSO solution on an indium-tin-oxide

(ITO) coated glass electrode. CV was carried out on a BAS CV-50W electrochem-

ical analyzer in CH3CN containing 0.1 M Et4NBF4 with a Pt counter electrode and

an Ag/Ag? pseudo-reference electrode at a scan rate of 100 mV s-1. Electrical

conductivity of a thin film was measured at room temperature with a four-probe
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technique using a Loresta-EP MCP-T360 (Mitsubishi Chemical Corp.). High-

resolution mass spectra (HRMS) were obtained on a JEOL JMS-SX102A

spectrometer. Elemental analysis was carried out on a vario MICRO elemental

analyzer (Elementar Analysensysteme GmbH).

Materials

THF was purified by passage through solvent purification columns under Ar pressure

[62]. Dehydrated DMSO and DMF were purchased from Wako Pure Chemicals

Industries and used without further purification. n-BuLi (1.6 M in hexane) was

purchased from Kanto Chemical Co., Inc. Dioctylamine and S8 were purchased from

Wako Pure Chemicals Industries, Ltd. 7,7,8,8-Tetracyanoquinodimethane (TCNQ)

was purchased from Tokyo Chemical Industry Co., Ltd. 4,16-Diethynyl[2.2]

paracyclophane 1 was synthesized according to the literature [47].

Polymerization

To a solution of 4,16-diethynyl[2.2]paracyclophane 1 (120 mg, 0.47 mmol) in THF

(5.0 mL), n-BuLi in hexane (1.6 M, 0.75 mL, 1.2 mmol) was added dropwise at

0 �C. After stirring for 1 h, the powder of S8 (34 mg, 1.1 mmol) was added to the

solution. The reaction mixture was stirred for 2 h. The reaction mixture was cooled

to -78 �C, and water (17 lL) was carefully added. Then the mixture was allowed to

warm to room temperature and the reaction mixture was stirred for 2 h. Finally, to

the mixture was added dioctylamine (0.15 mL) and stirred for 13 h. The mixture

was then poured into a large amount of Et2O. The obtained precipitate was washed

with Et2O and THF for several times to remove the unreacted dioctylamine,

followed by washing with water to remove inorganic salts. After drying the polymer

under reduced pressure, an orange powder was obtained.

Yield: 57%. 1H NMR (400 MHz, DMSO-d6): d 0.8 (br s, –Me), 1.0–2.0 (br m,

–(CH2)2–), 2.7–3.8 (br m, bridged –(CH2)2– of [2.2]paracyclophane and N–CH2–),

5.9 (m, C=C–H), 6.2–7.0 (br, Ar–H of [2.2]cyclophane and dibenzofulvene ring). IR

(KBr): 1610, 1505, 1495, 1195.

2-Ethynyl-p-xylene 3

2-Ethynyl-p-xylene 3 was synthesized by the standard Sonogashira coupling

reaction and deprotection. 2-Bromo-p-xylene (2.6 g, 14.3 mmol), trimethylsilyl-

acetylene (14.3 mL), PdCl2(PPh3)2 (0.67 g, 0.96 mmol), PPh3 (0.74 g 2.86 mmol),

CuI (0.29 g, 1.43 mmol) were dissolved in THF (27 mL) and NEt3 (18 mL). The

reaction mixture was stirred at 75 �C for 19 h under Ar. Precipitated ammonium

salts were filtered, and the filtrate was evaporated under reduced pressure. The

residue was subjected to column chromatography on SiO2 with hexane to obtain

2-trimethylsilylethynyl-p-xylene as a white solid (1.9 g, 9.6 mmol, 67%). To a

solution of 2-trimethylsilylethynyl-p-xylene (1.9 g, 9.6 mmol) in THF (35 mL) was

added Bu4NF (10 ml, 1.0 M in THF). The reaction mixture was stirred at room

temperature overnight under Ar. The solution was evaporated under reduced
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pressure, and the residue was purified by HPLC to afford 3 as a white solid (0.82 g,

6.3 mmol, 66%). The analysis data agree with the literature’s values [63].

Model compound 4

To a solution of 2-ethynyl-p-xylene 3 (0.13 g, 1.0 mmol) in Et2O (2.0 mL), n-BuLi

in hexane (1.6 M, 1.0 mL, 1.6 mmol) was added at 0 �C. After stirring for 1.5 h, the

powder of S8 (50 mg, 1.1 mmol) was added to the solution. The reaction mixture

was stirred for 2 h, and cooled to -78 �C. Water (30 lL) was carefully added. The

mixture was allowed to warm to room temperature and stirred for 12 h. The mixture

was extracted with Et2O, followed by washing with saturated NaCl aq. The organic

layer was dried over Na2SO4, and then, the solvent was dried in vacuo. The residue

was subjected to column chromatography on SiO2 with hexane to afford 4 as a

yellow solid.

Yield: 29%. Rf = 0.68 (SiO2, hexane/CH2Cl2, v/v = 2:1). 1H NMR (400 MHz,

CDCl3): d 2.29 (m, 12H, –CH3), 5.91 (s, 0.45H, (E)-C = C–H), 6.02 (s, 0.55H, (Z)-

C = C–H), 6.51 (s, 0.55H, (Z)-dithiafulvene ring proton), 6.54 (s, 0.45H, (E)-

dibenzofulvene ring proton), 6.86–7.24 (m, 6H, aromatic protons). 13C NMR

(100 MHz, CDCl3): d 19.51, 19.54, 19.83, 19.89, 20.69, 20.71, 21.10, 21.12,

110.58, 110.05, 113.61, 113.63, 125.98, 126.06, 126.72, 126.79, 129.45, 129.48,

129.98, 130.03, 130.29, 130.39, 130.56, 130.61, 131.70, 131.75, 131.87, 132.13,

132.66, 132.99, 133.46, 133.61, 135.17, 135.20, 135.45, 135.48, 135.71, 135.76,

136.75, 137.09. HRMS (EI): m/z calcd for C20H20S2 (M?): 324.1006. Found:

324.1002. Anal. calcd for C20H20S2: C, 74.03; H, 6.21; S, 19.76. Found: C, 73.67;

H, 6.18; S, 19.78.

Results and discussion

4,16-Diethynyl[2.2]paracyclophane 1 can be easily prepared from commercially

available [2.2]paracyclophane [47]. Scheme 1 outlines the synthetic procedure of

the target polymer 2. Treatment of 1 with n-BuLi and sulfur S8 at 0 �C in succession

afforded diethynethiolate, which was reacted with a small amount of H2O at -78 �C

to produce diethynethiol. Thioketene was formed by tautomerization in situ and

reacted with ethynethiol to obtain the polymer containing dithiafulvene units.

Finally, octylamine was added to quench the polymerization and to improve the

solubility of the polymer. After purification of the crude polymer by washing with

Et2O, THF, and H2O, polymer 2 was obtained in 57% isolated yield. The molecular

weights of the polymers were measured by GPC (eluent: DMF) and calculated by

using polystyrene standards. The number-average molecular weight (Mn) and the

weight-average molecular weight (Mw) were Mn = 7,200 and Mw = 9,300,

respectively. Polymer 2 could be dissolved in aprotic solvents such as DMSO

and DMF. A thin film of 2 could be readily obtained by a casting or spin-coating

method.

The structure of polymer 2 was confirmed by 1H NMR and IR spectra. The 1H

NMR spectrum of 2 in DMSO-d6 (400 MHz) is shown in Fig. 1. Signals at 0.8 and
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1.0–2.0 ppm were assigned to –Me and –(CH2)6– in the alkyl chains of the end-

capped dioctylamine moieties, respectively. The signals of –NCH2– groups

overlapped with those of DMSO and bridged methylenes of [2.2]paracyclophane.

Peaks of the bridged methylene protons of the [2.2]paracyclophane units were

observed at around 2.7–3.8 ppm as broad signals, which overlapped with those of

H2O and DMSO. The benzylidene protons were observed at around 5.9 ppm, which

are considered to be a mixture of (E)- and (Z)-isomers. Signals of the aromatic

protons in the [2.2]paracyclophane moieties appeared at 6.2–7.0 ppm due to the ring

current effect, which overlapped with the signals of ring protons in the dithiafulvene

moieties.
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Fig. 1 1H NMR spectrum of polymer 2 in DMSO-d6
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Figure 2 shows a comparison between the UV–vis absorption spectra of polymer

2 and model compound 4 (E/Z = 45/55), which was prepared by dimerization of

aldothioketene derived from 2-ethynyl-p-xylene 3 (Scheme 2). The absorption

maximum of polymer 2 in DMSO was observed at 378 nm. This maximum was

attributed to the p–p* transition of the conjugated polymer backbone. The absorption

maximum of model compound 4 was observed at 352 nm. The through-space

interaction of co-facial benzene rings in the [2.2]paracyclophane moiety resulted in

the extension of the p-conjugation length throughout the polymer chain. On the other

hand, the absorption maximum of the through-bond conjugated polymer 5 in CH3CN

appears at 398 nm [59, 60]. The through-bond conjugation is more effective for the

extension of p-conjugation than the through-space conjugations [40, 41].

The electrochemical behavior of polymer 2 was investigated by CV. The CV

measurement of a cast film of 2 was performed in dry CH3CN with 0.1 M NEt4BF4 at

room temperature and a scan rate of 100 mV s-1. The cyclic voltammogram is shown

in Fig. 3. Polymer 2 exhibited a single broad irreversible oxidation peak at around

0.63 V (vs. Ag/Ag?). In the previous study, it was found that polymer 5 exhibited an

irreversible oxidation peak at 0.61 V (vs. Ag/Ag?) [60]. The p-stacked structure of 2
did not affect the redox behavior of the dithiafulvene unit [47]; hence, the difference

in the peak potential of the dithiafulvene unit between 2 and 5 was small. This result

indicates that extension of p-conjugation length of 2 via the through-space interaction

would be similar to that of 5 via the through-bond interaction [60].
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A charge transfer (CT) complex formation of polymer 2 with TCNQ was

examined. It is known that both the dithiafulvene unit [61] and the [2.2]paracy-

clophane unit [64] form the CT complex. Figure 4 shows the dependence of the UV

spectrum of 2 on the TCNQ feed ratio against the [2.2]paracyclophane unit in

DMSO. Absorption peaks observed in the range of 600–1,000 nm were derived

from the anion radical of TCNQ by CT complexation. Absorbance due to CT

complexation with TCNQ increased with the addition of TCNQ. The absorbance in

the range of 600–1,000 nm was saturated when the feed ratio, [TCNQ]/[repeating

unit], was 2.0. A further increase in the feed ratio of TCNQ did not affect the

absorption of the anion radical of TCNQ. The peak intensity ratio of the 400 and

600–1,000 nm band is reported to be approximately 0.50 in the case of simple

TCNQ salts [65, 66]. In the present system, the intensity ratio was approximately

0.65 at [TCNQ]/[repeating unit] = 2.0, which implies a formation of TCNQ

complex with dithiafulvene as well as [2.2]paracyclophane units in the repeating

unit. The absorption peak at around 400 nm increased, and it was almost saturated at

[TCNQ]/[repeating unit] = 3.5–4.0. It is considered that excess TCNQ interacts

with the conjugated polymer chain.

A thin film of polymer 2 was fabricated by casting from a DMF solution, which

had an electrical conductivity of 1 9 10-6 S cm-1. Excess TCNQ on the basis of

the repeating unit was added to the solution of 2 to form the CT complex, as

mentioned above; after filtration of the remaining TCNQ, a dark green solution was

I (
m

A
)

E (V vs. Ag/Ag+)

0 0.5 1.0 1.5 2.0 

0

0.5

1.0

–0.5

Fig. 3 Cyclic votammogram of
the cast film of polymer 2 in
CH3CN
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dried on ITO to form the thin film of the CT complex. This thin film had an

electrical conductivity of 2 9 10-5 S cm-1, which was higher than that of the

undoped polymer thin film. The polymer was doped with an organic acceptor such

as TCNQ by the formation of the CT complex [61]. On the other hand, the electrical

conductivity measurement of polymer 2 by doping with I2 vapor was carried out.

The oxidized polymer thin film exhibited a conductivity of 3 9 10-6 S cm-1

(exposure time: 2 h), 7 9 10-4 S cm-1 (exposure time: 24 h), and 2 9 10-3 S

cm-1 (exposure time: 30 h), which was saturated for an exposure time of 30 h

(2 9 10-3 S cm-1, exposure time: 48 h). This value was higher than that obtained

by using TCNQ. In addition, the both values of the undoped and doped through-

space conjugated polymer 2 were slightly higher than those of the through-bond

conjugated polymer 5 we reported previously [60]. Further careful investigations

about that enhancement of the conductivity arises from the effect of the p-stacked

structure of the through-space conjugated polymer chain are currently in progress.

Conclusion

The cycloaddition polymerization of aldothioketene could be applied to the

cyclophane monomer, 4,16-diethynyl[2.2]paracyclophane, to obtain the correspond-

ing through-space conjugated polymer consisting of alternate dithiafulvene and

[2.2]paracyclophane units in the main chain. The polymers exhibited an extension

of the conjugation length via the through-space interaction of the [2.2]paracyclo-

phane unit. The polymer formed a CT complex with two equivalents of TCNQ

based on the repeating unit. A thin film of the through-space conjugated polymer

exhibited electrical conductivities of 2 9 10-5 and 2 9 10-3 S cm-1 by doping

with TCNQ and I2, respectively, which were higher than those of the through-bond

conjugated analogue.
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